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The open problem

Recent interest in matrix generalizations of
classical prediction tasks:

e Matrix Hedge (for PCA)
e M. Winnow (learning subspaces)
e M. Exponentiated Gradient (regression)

In each case the matrix generalizations of clas-
sical algorithms have performance guarantees
(worst-case regret bounds) identical to the clas-
sical tasks

Symmetric matrices have n® parameters and
vectors n parameters. Thus matrices should be
harder to learn!

Are classical bounds loose, or is there a

Free Matrix Lunch?

Our contribution

Extend the classical problem of predicting a se-
quence of outcomes from finite alphabet to ma-
trix domain

classical matrix
outcomes set of sizen  unit vectors in R"
uncertainty multinomial density matrix
parameters n n?

We show how popular online algorithms for
learning a multinomial distribution can be ex-
tended to learn density matrices

Learning the n* parameters of a density matrix
should be much harder than learning the n pa-
rameters of a multinomial distribution

Surprising, we prove that the worst-case regrets
of the classical algorithms and their matrix gen-
eralizations are identical:

Free Matrix Lunch!

Algorithms incur no overhead for learning the
eigenvectors of the density matrix

Many open problems

e Does the free matrix lunch hold for the
matrix minimax algorithm? cf. Shtarkov

e Same questions for other losses

e What properties of the loss function and
algorithm cause the free matrix lunch to
occur? Proper scoring rules?

e Is there a general regret-bound preserv-
ing lift of classical algorithms to matrix
prediction?
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Probability vector prediction

fortrialt =1,2,...do
Alg predicts with probability vector w;
Nat returns outcome
Alg incurs loss — log wy|xy]

end for

Regret
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Density matrix prediction

fortrialt =1,2,...do
Alg predicts with density matrix W,
Nat returns unit vector x;
Alg incurs loss —z; log(W;)x;

end for

Loss of the algorithm minus the loss of the best fixed prediction in hindsight

Goal: design online algorithms with low regret

Doee 1 €xy 11

where e; is ¢th basis vector, is

Regret of classical Laplace predictor wyy1 =

Regret(zy,...,x7) <

Regret of classical Krychevsky-Trofimoff predictor w;;; =

Regret(zy,...,x7) <

Density matrix

Positive-semidefinite matrix A of unit trace
Decomposition:

-
A = E o; A;a;
1

where eigenvalues a form probability vector
and eigenvectors a; are orthonormal system

Quantum entropy

H(A) = —tr(Alog A),

for density matrix A with matrix logarithm

log A = Z log(a;) a;a;

Equal to Shannon entropy of eigenvalues o

Example: 2D matrix log loss

Inn = 2 dimensions, we can parametrize the pre-

diction and outcome as follows:

W 0 cos 6
W= (O 1—w> and T = <Sin6’>

withw € |0,1] and € € |0, 27|. The loss becomes

—x 'log(W)x = —cos®6logw—sin®flog(1l—w)

t+n

(n—1)log(T + 1)

n— 1

> o1 €xy+1/2
t+n/2
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(log(T + 1) + log(m))

Log loss

The log loss is the fundamental loss for
forecasting - data compression - investment
In matrix case, discrepancy between density
matrix prediction W and unit vector outcome

x is measured by the matrix log loss

—x ' log(W)x

Equal to quantum cross entropy

Matrix log loss Is proper

The cumulative loss of a fixed prediction W

T
Z —x, log(W)x,
t=1

is minimized at the empirical mean W* =

y Zle x,x, , with value equal to T times the
quantum entropy: T' H(W™)

Result: worst-case classical and matrix regret coincide

for both Matrix Laplace
¢
Wi, 1 = argmin —tr(logW) + Z —qulog(W)a:'q
W dens. mat. N—
n uniform outcomes
and Matrix KT
, 1
W11 = argmin
W dens. mat.
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n /2 uniform outcomes

q=1

t
—5 tr(log W) + Z —aqulog(W)a:q =

q=1

t+n
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Any sequence of outcomes not in same eigensystem is suboptimal for Nat



