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The open problem
Recent interest in matrix generalizations of
classical prediction tasks:

• Matrix Hedge (for PCA)
• M. Winnow (learning subspaces)
• M. Exponentiated Gradient (regression)

In each case the matrix generalizations of clas-
sical algorithms have performance guarantees
(worst-case regret bounds) identical to the clas-
sical tasks

Symmetric matrices have n2 parameters and
vectors n parameters. Thus matrices should be
harder to learn!

Are classical bounds loose, or is there a

Free Matrix Lunch?

Our contribution
Extend the classical problem of predicting a se-
quence of outcomes from finite alphabet to ma-
trix domain

classical matrix

outcomes set of size n unit vectors in Rn

uncertainty multinomial density matrix
parameters n n2

We show how popular online algorithms for
learning a multinomial distribution can be ex-
tended to learn density matrices

Learning the n2 parameters of a density matrix
should be much harder than learning the n pa-
rameters of a multinomial distribution

Surprising, we prove that the worst-case regrets
of the classical algorithms and their matrix gen-
eralizations are identical:

Free Matrix Lunch!

Algorithms incur no overhead for learning the
eigenvectors of the density matrix

Many open problems
• Does the free matrix lunch hold for the

matrix minimax algorithm? cf. Shtarkov

• Same questions for other losses

• What properties of the loss function and
algorithm cause the free matrix lunch to
occur? Proper scoring rules?

• Is there a general regret-bound preserv-
ing lift of classical algorithms to matrix
prediction?

Probability vector prediction
for trial t = 1, 2, . . . do

Alg predicts with probability vector ωt

Nat returns outcome xt
Alg incurs loss − log ωt[xt]

end for

Density matrix prediction
for trial t = 1, 2, . . . do

Alg predicts with density matrixWt

Nat returns unit vector xt

Alg incurs loss −x>t log(Wt)xt

end for

Regret
Loss of the algorithm minus the loss of the best fixed prediction in hindsight
Goal: design online algorithms with low regret

Regret of classical Laplace predictor ωt+1 =
∑t

q=1 exq+1

t+n where ei is ith basis vector, is

Regret(x1, . . . , xT ) ≤ (n− 1) log(T + 1)

Regret of classical Krychevsky-Trofimoff predictor ωt+1 =
∑t

q=1 exq+1/2

t+n/2 is

Regret(x1, . . . , xT ) ≤
n− 1

2

(
log(T + 1) + log(π)

)

Density matrix
Positive-semidefinite matrixA of unit trace
Decomposition:

A =
∑
i

αi aia
>
i

where eigenvalues α form probability vector
and eigenvectors ai are orthonormal system

Log loss
The log loss is the fundamental loss for
forecasting - data compression - investment

In matrix case, discrepancy between density
matrix prediction W and unit vector outcome
x is measured by the matrix log loss

−x>log(W )x

Equal to quantum cross entropy

Matrix log loss is proper
The cumulative loss of a fixed predictionW

T∑
t=1

−x>t log(W )xt

is minimized at the empirical mean W ∗ =
1
T

∑T
t=1 xtx

>
t , with value equal to T times the

quantum entropy: T H(W ∗)

Example: 2D matrix log loss
In n = 2 dimensions, we can parametrize the pre-
diction and outcome as follows:

W =

(
ω 0
0 1− ω

)
and x =

(
cos θ
sin θ

)
with ω ∈ [0, 1] and θ ∈ [0, 2π]. The loss becomes

−x>log(W )x = −cos2 θ logω−sin2 θ log(1−ω)
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Quantum entropy

H(A) = − tr(A logA),

for density matrixAwith matrix logarithm

logA =
∑
i

log(αi)aia
>
i

Equal to Shannon entropy of eigenvalues α

Result: worst-case classical and matrix regret coincide
for both Matrix Laplace

Wt+1 = argmin
W dens. mat.

 − tr(logW )︸ ︷︷ ︸
n uniform outcomes

+
t∑

q=1

−x>q log(W )xq

 =

∑t
q=1 xqx

>
q +I

t+ n

and Matrix KT

Wt+1 = argmin
W dens. mat.

 −
1

2
tr(logW )︸ ︷︷ ︸

n/2 uniform outcomes

+
t∑

q=1

−x>q log(W )xq

 =

∑t
q=1 xqx

>
q +I/2

t+ n/2

Any sequence of outcomes not in same eigensystem is suboptimal for Nat


